

РОССИЙСКАЯ АКАДЕМИЯ НАУК ФИЗИЧЕСКИЙ ИНСТИТУТ им. П.Н. ЛЕБЕДЕВА АСТРОКОСМИЧЕСКИЙ ЦЕНТР

Баяндина Ольга Сергеевна

СВОЙСТВА МОЛЕКУЛЯРНОГО МАЗЕРНОГО ИЗЛУЧЕНИЯ В ГАЗО-ПЫЛЕВЫХ КОМПЛЕКСАХ МЛЕЧНОГО ПУТИ

Специальность 01.03.02 астрофизика и звездная астрономия

Научный руководитель: доктор физико-математических наук, ведущий научный сотрудник АКЦ ФИАН Вальтц Ирина Евгеньевна

Москва – 2016

Количество открытых мазерных источников

Количество открытых мазерных источников

Количество открытых мазерных источников

Параметры мазеров

OH	H ₂ O	cIMM	cIIMM						
Плотность на луче зрения									
$\sim 10^{19} \text{ cm}^{-2}$	$10^{19} \mathrm{CM}^{-2}$	$10^{16} - 10^{17} \mathrm{CM}^{-2}$	10^{17} CM^{-2}						
Плотность вещества									
$\sim 10^6 - 10^8 \text{ cm}^{-3}$	$\sim 10^6 - 10^8 \text{ cm}^{-3}$	$\sim 10^5 \text{ cm}^{-3}$	$\sim 10^4 - 10^9 \text{ cm}^{-3}$						
	Температура								
300-400 К	~400 K	~25–100 K	100–200 К						
	Размер мазе	рного пятна							
~3 a.e.	≤10 a.e.	~1 000 a.e.	~3 a.e.						
Количество									
13 655	<1 500	~400	~900						

^{OH, H2O} Hollenbach et al. (2013),

^{cIMM} Pihlstrom et al. (2014),

Эволюционные схемы

Накачка мазеров

Столкновительная

- OH(1720)
- H_O • cIMM

Наиболее вероятно – это ранние стадии эволюции – плотные изолированные сгустки межзвездной среды

5

Столкновительно-радиативная

- OH(1612)
- OH(1665)
- OH(1667)
- cIIMM

M8: The Lagoon Nebula

Накачка мазеров

Столкновительная

- OH(1720)
- H_O • cIMM

Наиболее вероятно – это ранние стадии эволюции – плотные изолированные сгустки межзвездной среды

Столкновительно-радиативная

- OH(1612) • OH(1665)
- OH(1667) • cIIMM

области, продвинутые по шкале эволюции – околозвездные диски

Факторы, провоцирующие столкновительную накачку

Биполярные потоки

Ударные волны на фронтах зон HII

Столкновения облаков

Основная цель работы

Изучение влияния различных динамических процессов на эволюцию межзвездной среды и выявление эволюционной связи мазеров метанола, ОН и Н₂О на ранней стадии сжатия газопылевой конденсации

Метод

Получение **более точных** взаимных привязок различных молекулярных мазеров в пределах отдельных конденсаций

Конкретные задачи:

- 1) оценка возможной роли небольших темных облаков в формировании протозвездных конденсаций (Глава 1);
- 2) оценка влияния **магнитного поля** на процессы сжатия газо-пылевых фрагментов межзвездной среды (Глава 2);
- 3) проведение исследований **мазеров ОН** в направлении метанольных мазеров I класса на одиночных телескопах и на интерферометрах (*Глава 3*);
- 4) проведение исследований **мазеров H**₂**O** в направлении метанольных мазеров I класса на одиночных телескопах и на интерферометрах (*Глава 4*).

Глава 1

Метанольное мазерное свечение I класса в инфракрасных облаках и третья версия каталога cIMM/SFR

N	Position	Source Name	RA (B1950) / (J2000)	Dec (B1950) / (J2000)	JSdv ; V _{LSR} for the strongest detail of the methanol spectra	Maser Identification MMII (Y) OH H ₂ O	IR identification: /IRAS /IRDC /SDC /EGO(number of table in [CWH])	Identification with UCHII BO	Molecules traced dense gas: CS	Distance
		2	ii fii s						40.10	Rpc
129	2 19.01-0.03	3	4 18 22 56.52 / 18 25 44.8	-12 24 32 / -12 22 45.8	1.8; 4.18 [CBH]	Y [E2]	8 /18228-1224 / / /1,5	9	10	11
130	19.36-0.03	Mol 55	18 23 37.9 / 18 26 25.8	-12 05 46.1 / -12 03 56.9	5.63; 25.01 [CBH]	Y [СВН] W [РВС]	/18236-1205 /+ /+ /2	UCHII [WC]		1.92[PBC]
131	19.61-0.23		18 24 50.3 / 18 27 38.05	-11 58 34 / -11 56 39.5	41.43 [BMG]	Y [PMB] OH [SIM] W [SIM]	/18248-1158 / /+ /	UCHII [WHR]	CS [BNM]	5.4 [AEP]
132	22.04+0.22		18 27 49.81 / 18 30 34.7	-09 36 54.3 / -09 34 47.0	5.33; 49.83 [CBH]	Y [PMB]	/18278-0936 / /+ /1		-	
133	23.01-0.41		18 31 56.70 / 18 34 40.9	-09 03 18.0 / -09 00 52.9	10.3; 77.12 [SKV] [CBH]	Y [PMB] [E] OH [SIM] W [SIM]	/18318-0901 / /+ /1		CS [LVW]	12.8 [AEP] 4.59 [RMZ1]

О. С. Баяндина, И. Е. Вальтц, Г. М. Ларионов, Астрон. журн. 89, 611 (2012) I. E. Val'tts, G. M. Larionev, O. S. Bayandina, Revised version of the class I methanol maser catalog (2010) http://arxiv.org/abs/1005.3715 **IRDC(MSX) и SDC(Spitzer)** - плотные, холодные фрагменты межзвездной среды, т.е. небольшие изолированные темные облака с нечетко выраженными границами, наблюдающиеся в поглощении в коротком и среднем инфракрасном диапазоне на фоне излучения плоскости Галактики

Infrared Dark Clouds IRDC

Spitzer Dark Clouds SDC

Extended Green Objects

Новый класс объектов, протяженных на длине волны 4.5 мкм обнаруженный в ходе работы обнаруженный в ходе работы *Spitzer Space Observatory* – с большой вероятностью отслеживают биполярные потоки

в ближнем ИК-диапазоне

G35.03+0.35

Right ascension

Трехцветное изображение IRAC/Spitzer: 3.6 мкм, <u>4.5 мкм</u>, 8.0 мкм

C. J. Cyganowski et al. Astrophys. J. 136, 2391 (2008) X. Chen et al., Astrophys. J. Suppl. Ser. 196, Issue 1, 9 (2011) Статистика отождествления сІММ с различными типами объектов межзвездной среды

выводы:

Метанольные мазеры I класса **МОГУТ** формироваться <u>в изолированных</u> <u>самогравитирующих</u> <u>конденсациях SDC</u>

Выборка SDC предлагается как <u>новый самостоятельный список</u> для поисковых обзоров на характерных частотах метанольного излучения I класса с целью обнаружения новых объектов данного типа

Глава 2

Магнитные поля в метанольных мазерных конденсациях по данным исследований сопряженных областей

Представлены результаты обработки данных поляризационных наблюдений, выполненных на радиотелескопе в **Нансэ** в **4-х параметрах Стокса** для **7 мазерных источников ОН**, ассоциирующихся с **метанольным излучением** как **I**, так и **II класса**,

т.е. различающихся по эволюционному типу.

О. С. Баяндина, А. В. Алакоз, И. Е. Вальтц, Астрон. журн. 90, 967 (2013), **О. С. Баяндина**, А. В. Алакоз, И. Е. Вальтц, Астрон. журн. 91, 540 (2014).

Большой радиотелескоп в Нансэ (Франция)

Эффективная собирающая площадь

Диаграмма направленности на половине мощности сигнала по прямому восхождению

Диаграмма направленности на половине мощности сигнала по склонению

Разрешение

Чувствительность на 18 см и $\delta = 0^{\circ}$

0.14 км/с

763 Гц

 $200 \times 35 \text{ M}^2$

3.5

19

1.4 К/Ян

Наблюдения выполняли В. И. Слыш, А. В. Алакоз и И. Е Вальтц в 2003 г.

16

Спектры 4-х параметров Стокса для линий на частотах 1665 и 1667 Мгц

Спектры 4-х параметров Стокса для линий на частотах 1665 и 1667 МГц

17

Гауссовы параметры мазерных линий ОН на частотах 1665 и 1667 МГц

Галактические координаты	Частота линии, MHz	Поляр изация	∫S _v dV, Ян∙км/с	V _{lsr} , км/с	Ширина линии, км/с	S, Ян
	166=	L	2.90 (0.20)	9.5 (0.05)	0.4 (0.20)	6.2
	1005	R	2.70 (0.60)	10.3 (0.05)	0.6 (0.20)	4.5
05.000-0.393	1667	L	3.70 (0.50)	9.7 (0.02)	0.3 (0.06)	10.7
	100/	R	3.50 (0.50)	10.2 (0.02)	0.3 (0.06)	9.6
	1665	R	0.25 (0.03)	109.0 (0.03)	0.4 (0.05)	0.6
G12.03-0.03	1667	L	0.06 (0.02)	106.7 (0.03)	0.2 (0.20)	0.4
	1007	R	0.07 (0.03)	106.8 (0.04)	0.2 (0.10)	0.4
G20.23+0.07	1665	R	2.10 (0.20)	73.8 (0.02)	0.7 (0.10)	2.9
G33.103+0.108	1665	L	0.30 (0.10)	79.8 (0.02)	0.3 (0.06)	1.0
		R	0.80 (0.10)	79.7 (0.01)	0.3 (0.02)	2.5
	1667	L	0.02 (0.03)	78.1 (0.08)	0.1 (0.95)	0.2
		R	0.63 (0.03)	78.0 (0.01)	0.2(0.02)	2.5
	1665	L	2.30 (0.10)	-79.8 (0.01)	0.7 (0.03)	3.1
G349.09+0.11		R	1.10 (0.10)	-80.2 (0.03)	0.7 (0.07)	1.4
	1667	L	0.90 (0.10)	-79.8 (0.01)	0.3 (0.03)	2.6
	1665	L	5.10 (0.20)	-50.8 (0.01)	1.0 (0.05)	5.0
G352.52-0.16		L	1.40 (0.10)	-51.7 (0.03)	1.0 (0.08)	1.3
	100/	R	3.20 (0.10)	-51.6 (0.02)	1.2 (0.05)	2.5
	1665	L	0.50 (0.10)	-26.6 (0.04)	0.5 (0.10)	0.9
	1005	R	0.30 (0.10)	-27.2 (0.05)	0.7 (0.20)	0.5
0350.235+0.110	1667	L	0.90 (0.20)	-26.7 (0.05)	0.7 (0.20)	1.4
	1007	R	0.40 (0.10)	-27.1 (0.04)	0.6 (0.10)	0.7

Поляризационные параметры, полученные из 4-х параметров Стокса на частотах 1665 и 1667 МГц

Поляризационные параметры, полученные из 4-х параметров Стокса на частотах 1665 и 1667 МГц

Полученные значения вычислены по формулам:

M. Szymczak and E. Gerard, Astron. & Astrophys. 494, 118 (2009).

Определение значений напряженности магнитного поля методом аппроксимации параметра V производной dI/dv

Определение значений напряженности магнитного поля методом аппроксимации параметра V производной dI/dv

Параметры поляризации и магнитного поля мазерных линий ОН на частотах 1665 и 1667 МГц

							FUI LAS	
Галактические координаты	Частота линии, МГц	V _{lsr} , км/с	т _с , %	р, Ян	m _L , %	X, °	В, мГс	
	1665	9.5	-72	0.6	8	19	1.4	
	1005	10.3	73	0.4	5.9	-35	1.4	2 AV
65.000-0.393	1667	9.7	-81	1.5	12.8	-40		
	1007	10.2	99	0.6	6.4	-7.5	1.4	HE R
	1665	109.0	65			3-9	<0.5	
G12.03-0.03	1667	106.8	51		80183		<0.5	KZ
G20.23+0.07	1665	73.8	85	0.4	10	-22	<0.5	
	1665	79.7	80	0.4	13	-27	-0.5	AL.
633.103+0.108	1667	78.0	91	0.5	26	16	-0.5	ATA
	166-	-79.8	-66	0.7	16	-35	-0.8	
G349.09+0.11	1005	-80.2	-0.3	0.6	22	14	-0.0	
	1667	-79.8	-86	0.5	15	-19	-0.8	Par la
	1665	-50.8	-51	1.1	15	37	<0.5	
6352.52-0.10	1667	-51.6	37	0.4	8	-24	<0.5	
	166-	-26.6	-69	0.3	24	-5	1.0	
	1005	-27.2	41	0.5	68	8	-1.2	191
	1667	-26.7	-66	0.5	28	-12		T
	1667	-27.1	38	0.4	51	17	-1.1	

Линейные расстояния между центрами скоплений мазерных пятен **ОН** и **сШММ** оказались в пределах **~2 000 а.е.** (такие размеры характерны для **околозвездных дисков**)

Диск в Туманности Ориона по данным Hubble

Линейные расстояния между центрами скоплений мазерных пятен **ОН** и **сІММ** оказались в пределах **<100 000 а.е. (<0.5 пк)** (такие размеры характерны для **облаков IRDC**)

Полученные значения вычислены по формулам:

Соотношение между плотностью и магнитным полем	$ \mathbf{B} \propto n^{0.47}$				
Отношение плотностей молекул ОН и Н ₂ на луче зрения	$\frac{N_{OH}}{N_{H_2}} = 4 \times 10^{-8}$				
Отношение критической массы к магнитному потоку	$\frac{M}{\Phi_{\rm B}} = 1.0 \times 10^{-20} \frac{N_{\rm H2}}{ \rm B }$				
Отношение теплового давления к давлению магнитного поля	$\beta_p = 2\left(\frac{m_A}{m_s}\right)^2,$	m_s - «звуковое число Маха» m_A - «альфвеновское число Маха»			
Теорема вириала	$E_k \approx E_m \approx \frac{1}{2}E_k$	g			
Характерное время жизни	$t_c = 9.9 \left(\frac{n_{H2}}{10^2 \text{ см}^{-3}}\right)^{-\frac{1}{2}} \times 10^6$ лет				
Отношение времени прохождения альфвеновской волны к времени гравитационного коллапса	$\frac{t_{A}}{t_{c}} = 0.76 \left(\frac{L}{10 \text{ mK}}\right) \left(\frac{n_{H2}}{10^{2} \text{ cm}^{-3}}\right) \left(\frac{B}{10 \text{ mK}\Gamma c}\right)^{-1}$				

R. M. Crutcher, Astrophys. J. 520, 706 (1999),

C. F. Gammie and E. C. Ostriker, Astrophys. J. 466, 814 (1996).

Расчетные значения плотностей, соответствующие значению напряженности магнитного поля и возможным линейным размерам R излучающей области

Название источника	В, мГс	п _{н2} ·10 ⁵ , см ⁻³	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		R, a.e. cIMM/cIIMM
G5.886-0.393	1.4	45	16.2/3.6	64.8/14.4	21 000/ 5 000
G12.03-0.03	< 0.5	<5.6	< 0.2	<0.9	/3 136
G20.23+0.07	< 0.5	<5.6	< 0.2	<0.9	2 060
G33.103+0.108	0.5	5.6	1.1	4.4	11 200
G349.09+0.11	0.8	15.9	20.4	81.4	81 510
G352.52-0.16	< 0.5	<5.6	<0.2	0.9	/1 600
G358.235+0.116	1.2	32	3.5	14	6 000

Гравитационно-магнитные параметры газо-пылевой среды в исследуемых мазерных ассоциациях

Название источника	M/ $\Phi_{ m B}$	m _s (T=10K/ T=100K)	m _A	β _P (T=10K/ T=100K)	E _k /E _g	$\mathrm{E_m/E_g}$	t _C ·10 ⁶ , лет	t _A /t _C
C 5 886 0 303	11.6/	2/	03	0.05/	0.004/	0.06/	0.5	2/
G3.000-0.393	2.6	0.6	0.3	0.5	0.07	1.1	0.5	0.6
G12.03-0.03	>0.4	1.6/0.5	>0.3	>0.07/0.7	1.5	<36.7	0.13	0.09
G20.23+0.07	>0.4	2.8/0.9	>0.5	>0.06/0.6	4.7	<36.7	0.13	0.09
G33.103+0.108	2.2	1.2/0.4	0.2	0.06/0.5	0.03	1.5	0.13	0.4
G349.09+0.11	25.4	2.8/0.9	0.5	0.06/0.6	0.002	0.01	0.08	2
G352.52-0.16	>0.4	3.8/1.2	>0.7	>0.07/0.7	8.8	<36.7	0.13	0.1
G358.235+0.116	3.0	2.4/0.8	0.5	0.09/0.8	0.07	0.7	-	-

ВЫВОД 1,2:

• $M/\Phi_B > 0.12, E_k/E_g < 1, E_m/E_g < 1$: Магнитное поле неспособно стабилизировать коллапс,

т.е. облака находятся в состоянии неустойчивого равновесия, теряют сферическую форму и стремятся к форме плоского (аккреционного) диска

β_P < 1: Облака могут находиться в магнитно-доминирующем

режиме, т.е. магнитное поле способно противостоять гравитационной компрессии, сдерживая фазу образования протозвезды
вывод з:

t_C ~ 10⁵ лет:

Имеется преимущество в определении возраста мазерных конденсаций с привлечением оценки влияния магнитного поля на параметры спектра линий способами, позволяет перед другими которое сопоставить гравитационное и магнитное поле на очень мелких масштабах, точнее определить гравитационную устойчивость ассоциации мазерных компонентов и вероятное время их эволюции вплоть до коллапса, зарождения протозвездного объекта и протопланетного диска

Гипотеза

Поскольку предполагается, что мазерное излучение **OH(1720)** и **cIMM** обусловлено **столкновительной накачкой**, естественно поставить вопрос о том, можно ли **обнаружить излучение OH(1720)** – как маркера ударных волн **от биполярных потоков** – **в направлении cIMM**, в частности, в направлении объектов **EGO**?

Глава 3

Исследования метанольных мазерных конденсаций I класса, ассоциирующихся с объектами EGO, в линиях OH на одиночном телескопе и на интерферометре

Наблюдения проводились на радиотелескопе **РТ-70** (Крым, Евпатория) и на интерферометрической решетке **VLA** (США) **в рамках собственных заявок**.

И. Д. Литовченко, О. С. Баяндина, А. В. Алакоз, И. Е. Вальтц, Г. М. Ларионов и др. Астрон. журн. 89, 593 (2012). О. С. Баяндина, И. Е. Вальтц, С. Е. Куртц, Астрон. журн. 92, 883 (2015).

PT-70

Евпатория, Крым Центр дальней космической связи,

Наблюдения проводились с 15 по 29 июня 2010 г.

на частоте покоя перехода ОН 1720 МГц на координатах сІММ

Диаметр антенны	70 м
Ширина диаграммы направленности на 1720 МГц	9'
Чувствительность по потоку	0.1 Ян
Шумовая температура системы	35 K
Разрешение	4.028 кГц 0.7 км/с

Спектры 18 EGOs в линии ОН(1720), РТ-70

V_{LSR}, км/с

33

Гауссовы параметры линий ОН(1720), РТ-70

Источник	RA(J2000)	DEC(J2000)	Поляриза ция	$\int SV dV, \qquad \begin{array}{c} V_{LSR}, \\ KM/c \end{array}$		Ширина линии, км/с	Smod, Ян	$<\!\!N_{OH}\!\!>$, $10^{16} \mathrm{cm}^2$
				Ян•км/с				
G10.29-0.13	18 08 49.528	-20 05 53.497	R	1.14 (0.16)	24.37 (0.70)	6.12 (0.70)	0.18	0.7
			L	1.14 (1.35)	37.90 (2.64)	3.80 (4.76)	0.45	0.3
G10.34-0.143	18 09 00.0	-20 03 35.0	R	0.56 (0.36)	23.21 (1.58)	4.42 (2.48)	0.12	0.3
			L	-4.21 (1.03)	12.19 (0.42)	7.75 (1.43)	-0.51	2.5
G11.94-0.62	18 14 00.92	-18 53 25.2	R	3.34 (1.17)	29.71 (2.58)	4.21 (3.37)	0.22	2
			L	0.92 (0.10)	30.34 (0.70)	4.85 (0.70)	0.18	0.6
G14.33-0.64	18 18 54.61	-16 47 49.7	R	0.84 (0.16)	19.12 (0.22)	2.20 (0.49)	0.36	0.5
			L	0.56 (0.06)	19.15 (0.11)	1.92 (0.21)	0.28	0.3
G19.01-0.03	18 25 44.8	-12 22 45.8	R	0.16 (0.04)	42.36 (0.25)	2.00 (0.51)	0.08	0.1
			L	0.48 (0.12)	51.78 (0.51)	4.51 (1.14)	0.1	0.3
G19.36-0.03	18 26 25.8	-12 03 56.9	R	0.05 (0.02)	24.68 (0.36)	0.74 (9.29)	0.06	0.03
			L	0.15 (0.03)	28.92 (0.27)	1.94 (0.51)	0.07	0.1
G25.27-0.43	18 38 56.9	-07 00 48.0	R	1.63 (0.98)	56.01 (0.16)	2.23 (0.69)	0.69	1
			L	1.45 (0.32)	55.90 (0.70)	2.54 (0.70)	0.54	0.9
G34.3+0.2	18 53 18.51	01 14 57.6	R	22.46 (2.32)	60.33 (0.09)	3.86 (0.21)	5.47	13
			L	18.70 (4.02)	60.27 (0.27)	4.01 (0.18)	4.38	11
G34.403+0.233	18 53 17.4	01 24 55	R	-0.52 (0.11)	53.23 (0.36)	3.28 (0.68)	-0.15	0.3
			L	0.30 (0.07)	59.07 (0.25)	2.20 (0.54)	0.13	0.2
G39.10+0.491	19 00 58.1	05 42 44.0	R	-0.43 (0.18)	34.97 (0.76)	3.91 (1.48)	-0.1	0.3
			L	0.11 (0.06)	11.90 (0.32)	1.40 (1.08)	0.08	0.03
G43.04-0.452	19 11 38.81	08 46 37.9	R	-0.10 (0.03)	71.68 (0.30)	1.61 (0.57)	-0.06	0.06
			L	0.39 (0.47)	63.29 (0.94)	5.64 (3.73)	0.07	0.2
G45.47+0.07	19 14 25.73	11 09 37.3	R	-0.54 (0.12)	55.79 (0.17)	2.56 (0.43)	-0.2	0.3
			L	-0.59 (0.09)	60.86 (0.15)	2.00 (0.32)	-0.28	0.4
G49.267-0.337	19 23 06.7	14 20 13.0	R	0.89 (0.27)	69.39 (0.15)	1.32 (0.32)	0.63	0.2
			L	0.86 (0.24)	69.20 (0.11)	1.26 (0.36)	0.64	0.2

Физические параметры EGOs, PT-70

Зафиксированы:

<u>9 узких (<2 км/с, мазерные?)</u> и

14 тепловых эмиссионных деталей

Параметр	Узкие	Широкие
N _{OH,} см ⁻²	1.6×10^{15}	$1.3 imes 10^{16}$
п_{Н2}*, см⁻ 3	$10 - 10^2$	$10^2 - 10^3$
		Ť

*в предположении, что размер конденсации равен 1000 а.е.

- пространственное несовпадение конденсаций сІММ и ОН(1720)
- незначительная мощность биполярных потоков
- различия в моделях их накачки

VLA (NRAO, USA)

Для того, чтобы сузить область пространственного отождествления мазеров **ОН(1720)** и сІММ, статистически значимая ассоциация которых была обнаружена в рамках наблюдений на РТ-70, была подана заявка на наблюдения в научный комитет Национальной Радиоастрономической Обсерватории США (NRAO)

Наблюдения на VLA

Proposal: VLA-13А-406 Общее время наблюдений: 20 часов Авторы: S. Kurtz, I. E. Val'tts, **O. S. Bayandina**

с Выборка:	100 источников из собственного каталога сIMM* со склонением > -34° (80 cIMM/SFR + 20 EGOs)
Наблюдения:	Конфигурация С (~12") Полоса L: HI (1420 МГц), ОН (1612, 1665, 1667, 1720 МГц), континуум (1000-2000 МГц)
	Июль – Август 2013 ~8 мин/источник

*I. E. Val'tts, G. M. Larionov, **O. S. Bayandina**, Revised version of the class I methanol maser catalog (2010) http://arxiv.org/abs/1005.3715

Параметры наблюдений

Диаметр антенны	25 м
Диаметр эквивалентной апертуры решетки VLA (27 антенн)	120 м
Ширина диаграммы направленности	(12")
Чувствительность по потоку	0.1 Ян (5о)
Спектральное разрешение	1.953 кГц/ 0.34 км/с

VLA

Very Large Array, Сокорро, Нью-Мексико, США

Спектрометр VLA

Типичная структура наблюдательных блоков, полученных на VLA

Сканирование	Длительность	Источник
Амплитудный калибратор (Наведение – Dummy scan)	1 МИН	0137+331=3C48
Амплитудный калибратор	10 мин.	0137+331=3C48
Фазовый калибратор (сканирование 1)	5 мин.	J0014+6117
Источник (target source)	8 мин.	G111.542+0.777

Источник (tar Hasoдин блок = 18час наблюдений 4.513-0.535

Источник (target source)	о мин.	G119.779-0.031
Фазовый калибратор (сканирование 2)	2 мин.	J0014+6117
Источник (target source)	8 мин.	G121.298+0.659
Источник (target source)	8 мин.	G122.015-7.072
Фазовый калибратор (сканирование 3)	2 мин.	J0014+6117

Обработка данных

Обработка интерферометрических данных проводится с помощью программного пакета CASA Common Astronomy Software Applications

Пакет **CASA** создавался для предоставления наиболее широкого круга возможностей обработки данных, полученных на радиотелескопах нового поколения, таких как ALMA и EVLA.

Общий вид некалиброванных данных

При устранении «плохих» данных параметры подбираются для:

Общая схема калибровки данных, которая Нами выполнялась:

Основное правило для калибраторов

в пределах допустимых ошибок точечный источник должен иметь примерно нулевую фазу и некоторую постоянную амплитуду на каждой исследуемой базе (обозначены цветом), на каждой частоте и в каждой поляризации

Необработанные данные

Основное правило для калибраторов

в пределах допустимых ошибок точечный источник должен иметь примерно нулевую фазу и некоторую постоянную амплитуду на каждой исследуемой базе (обозначены цветом), на каждой частоте и в каждой поляризации.

Получено 336 итоговых графиков с калибраторами: обрабатывалось 2 калибратора в 8 спектральных окнах в 21-ом блоке расписания

Построение карт источников для 20 EGOs

Параметры мазерных деталей (VLA)

Источник	Частота,	Поляр	RA(J2000)	DEC(J2000)	И <mark>нтегральный</mark>	і Плотность	V_{LSR} ,	Ширина	T _{br}
	МГц	изаци	ſ		поток,	потока в	2011	линии,	
						пике,		1//	
					нК	Ян/луч	км/с	км/с	103 K
G19.36-0.03	1665	R	18 26 25.76	-12 03 53.61	6.26	6.14	21.38	1.4	8
	1667	R	18 26 25.75	-12 03 53.75	1.48	1.32	20.35	1.05	2
G23.01-0.41	1665	R	18 34 40.17	-09 00 39.84	22.39	21.41	69.86	1.05	48
	1667	R	18 34 40.17	-09 00 39.72	41.7	40.29	73.73	1.05	90
G24.943+0.074	1612	R	18 36 31.60	-07 04 16.71	0.45	0.5	44.85	0.7	1
	1665	R	18 36 31.59	-07 04 16.88	8.98	8.31	36.3	1.05	13
G28.83-0.25	1665	R	18 44 51.16	-03 45 50.39	4.07	3.93	84.93	1.4	3
	1667	R	18 44 51.17	-03 45 50.51	5.25	5.01	83.52	1.76	3
G34.403+0.233	1612	R	18 53 17.92	+01 25 25.48	2.69	2.03	57.48	1.4	2
	1665	R	18 53 17.96	+01 25 25.53	4.61	4.29	51.23	1.05	4
	1667	L	18 53 17.95	+01 25 25.45	3.67	3.17	54.03	1.4	4
G35.03+0.35	1665	R	18 54 00.53	+02 01 20.57	23.98	23.24	47.94	1.76	21
	1667	R	18 54 00.46	+02 01 21.62	0.34	0.28	46.52	1.05	0.3
G35.20-0.74	1665	R	18 58 12.95	+01 40 36.77	13.89	13.79	30.31	1.4	13
	1667	R	18 58 12.97	+01 40 37.00	1.04	0.91	29.26	1.05	1
G43.04-0.452	1665	R	19 11 38.92	+08 46 30.29	4.1	4.12	58.08	1.76	9
	1667	L	19 11 38.94	+08 46 30.40	1.92	1.94	60.46	2.11	4
G45.47+0.07	1665	L	19 14 25.70	+11 09 25.94	56.43	55.06	66.07	0.7	121
	1667	R	19 14 25.67	+11 09 25.95	3.97	3.81	63.91	1.4	8
	1720	L	19 14 25.66	+11 09 26.07	0.99	0.86	62.65	1.05	2
G45.47+0.13	1665	L	19 14 07.39	+11 12 16.67	23.64	22.97	59.39	1.05	51
	1667	L	19 14 07.52	+11 12 18.15	1.29	0.66	59.7	1.05	1
					1	11/15/11			

Параметры мазерных деталей были получены из карт с помощью задачи "2D Gaussian Fitting"

Спектры ОН, полученные в обзоре на VLA, в направлении EGOs

ЯΗ

Поток,

Положение мазеров OH на трехцветных изображениях, полученных на космическом телескопе Spitzer

G19.36-0.03

Right ascension

Declination

G24.94+0.07

48

45:10.0 20.0 30.0 Declination 40.0 50.0 -3:46:00.0 10.0 10″ ~0.24 pc 20.0 54.0 53.0 52.0 18:44:50.0 **Right ascension**

G28.83-0.25

26:00.0 50.0 40.0 Declination 30.0 20.0 10.0 10" 1:25:00.0 ~0.17 pc 24:50.0 18.0 18:53:20.0 17.0 15.0 16.0 **Right ascension**

G34.403+0.233

G35.03+0.35

Right ascension

G35.20-0.74

48

G43.04-0.452 10.0 8:47:00.0 50.0 Declination 40.0 30.0 20.0 10.0 10" ~0.19 pc 46:00.0 45:50.0 19:11:40.0 38.0 37.0 36.0 **Right ascension**

48

G45.47+0.13

ВЫВОД №1

 Влияния биполярного потока от EGO достаточно, чтобы возбудить метанольный мазер I класса, но недостаточно, чтобы возбудить столкновительный спектр в ОН

Right ascension

49

Наш главный результат – сравнение точных, однородных данных с VLA для мазеров метанола с использованием новых собственных данных по OH, также полученных на VLA – такая возможность сейчас существует только для 6 объектов EGOs !!!

50

На основе анализа этих карт нами получены медианные значения расстояний между различными пекулярными объектами в EGOs

¹J. X. Ge, J. H. He, X. Chen, S. Takahashi, MNRAS, 445, 1170 (2014)

²H. Beuther, P. Schilke, T. K. Sridharan, K. M. Menten et al., A&A, 383, 892 (2002)

³S. Kurtz, IAU Symp. 227, 111 (2005)

ВЫВОД №2

- cIMM **не сосуществуют** с точечным источником излучения, мазерами OH и cIIMM **в одном и том же молекулярном ядре**
- сІММ формируется в других физических условиях **в другом молекулярном ядре скопления**

ВЫВОД №3

- Эволюционные треки cIMM и других мазеров могут быть не связаны между собой
- Фаза перехода ядра 1 в состояние такое же как у ядра 2, т.е. с большим набором мазеров, также остается неясной

Гипотеза

Накачка мазеров Н₂О, как и метанольных мазеров I класса – чисто столкновительная. Оба этих мазера вместе с протяженной эмиссией на длине волны 4.5 мкм (EGOs) могут быть индикаторами очень ранней стадии развития молодых звездных объектов.

Глава 4

Исследования метанольных мазерных конденсаций I класса в линиях H₂O на одиночном телескопе и на интерферометре

 Представлены результаты наблюдений 24-х мазеров Н₂O, ассоциирующихся с EGOs, на радиотелескопе РТ-22

 и результаты исследования тонкой пространственной структуры мазера H₂O, ассоциирующегося с сIMM IC1396N, на наземно-космическом интерферометре РадиоАстрон.

Г. М. Рудницкий, Е. Е. Лехт, **О. С. Баяндина**, И. Е. Вальтц, Э. Р. Хан, Астрон. журн. 93, 121-136 (2016).

PT-22

Пущинская радиоастрономическая обсерватория АКЦ ФИАН

Наблюдения проводились в январе-мае 2015 г.

Диаметр антенны	22 м
Ширина диаграммы направленности на 1.35 см	2.6'
Чувствительность по потоку	10 Ян
Шумовая температура системы	150—250 К
Разрешение	6.1 кГц 0.08 км/с
Время накопления	7-15 мин

Параметры линий

№	Источник	RA(J2000)	Dec(J2000)	V(CH ₃ OH), км/с	V(H2O), км/с	Fv(H₂O), Ян
1	G11.94-0.62	18 14 00.9	-18 53 25.2	35.19	21.2	45
2	G14.33-0.64	18 18 54.6	-16 47 49.7	22.55	22.7	17
3	G16.59-0.06	18 21 11.3	-14 31 51.7	61.17	63	40
4	G23.01-0.41	18 34 40.9	-09 00 52.9	77.12	62.6	64
5	G24.943+0.074	18 36 31.5	-07 04 16.0	41.35	42.8	32
6	G28.83-0.25	18 44 51.0	-03 45 49.0	86.18	77.6	7
7	G34.403+0.233	18 53 17.4	+01 24 55.0	60.33	56.3	455
8	G34.3+0.2	18 53 18.5	+01 14 57.6	56.41	57.3	494
9	G35.20-0.74	18 58 12.6	+01 40 36.4	34.2	31.4	504
10	G45.47+0.07	19 14 25.7	+11 09 37.3	55.9	54	10
11	G49.267-0.337	19 23 06.7	+14 20 13.0	67.14	67.6	12

Сравнение с:

C. J. Cyganowski, J. Koda, E. Rosolowsky, S. Towers, et al., Astrophys. J. 764, 61 (2013).

Спектры H₂O, полученные на PT-22 в направлении cIMM/EGOs

выводы

Возможные объяснения различия в лучевых скоростях мазеров H₂O и сIMM:

1. мазеры находятся в разных молекулярных ядрах, 2. излучение H_2O исходит из небольших областей за фронтом ударной волны, возбуждающей мазер, что приводит к сдвигу скорости мазера H_2O относительно более спокойной среды, содержащей протяженные структуры с сIMM,

3. мазеры H₂O и метанола находятся на разных участках фронта биполярного потока, например, H₂O в основании, а сIMM - на фронте взаимодействия ударной волны с веществом окружающего молекулярного облака.

IC 1396

Эмиссионная туманность в созвездии Цефея (расстояние 750 пк)

IC 1396 15 IC 1396 N темных облаков и глобул 25источников IRAS 6 кандидатов YSO

1 YSO IRAS 21391+5802 (**460L**_☉, **IR**)

Мазер Н₂О и сІММ нет сІІММ и ОН

61

A teeny-tiny disk !!!

Ранние радиоинтерферометрические исследования мазера Н₂О

V. Migenes, S. Horiuchi, V. I. Slysh, I. E. Val'tts, et al. Astrophys. J. Suppl. Ser. 123, 487 (1999) V. I. Slysh, I. E. Val'tts, V. Migenes, E. Fomalont et al., Astrophys. J. 526, 236 (1999)

Наблюдения

В период **с июля по декабрь 2014** г. была проведена серия из **пяти последовательных сессий наблюдений** на наземно-космическом интерферометре, в состав которого входит

10-м космический телескоп РадиоАстрон

и сеть наземных радиотелескопов

Ef - 100-м Эффельсберг, Германия; Sr - 65-м Сардиния, Италия; **Ys** - 40-м Ебес, Испания; **Nt** - 32-м Ното, Италия; **Tr** - 32-м Торунь, Польша; **Sv** - 32-м «Светлое», РФ.

RadioAstron AO-2 proposal: RA-AO2-17

S. Kurtz (P.I.), А. В. Алакоз, О. С. Баяндина, И.Е. Вальтц, С.В. Каленский, Г.М. Ларионов, Г.М. Рудницкий 63

Наблюдательные сессии

Код	Дата	Длительность сеанса (часы)	Средний размер проекции базы (диаметры Земли, ED)	Эффективное разрешение (mas)	Поток источника (Ян)
А	Июль 2014	3	2.5	0.1	5
В	Октябрь 2014	4	3.8	0.05	12
С	Ноябрь 2014	1	5.9	0.03	20
D	Декабрь 2014	1	5.1	0.03	51
E	Декабрь 2014	1	3.8	0.05	28

Технические характеристики наблюдений

Частота	22.2280 ГГц
Разрешение по частоте	7.81 кГц
Разрешение по скорости	0.11 км/с
Диаграмма направленности (для наземной базы во второй (В) сессии)	10.6 x 2.5 mas

Статус наблюдений

Observation code	Telescope	Band	Start	Stop	Comment	
rags06a	Ra	K	2014-07-26 04:00:00	2014-07-26 07:00:00	tracking station: green bank OK. No problems noticed. S/N = 13.5, Gain = 6, POE = 0.0E-3	
rags06b	Ra	K	2014-10-10 20:30:00	2014-10-10 21:00:00	tracking station: green bank All three parts had no problems. Part 1: $S/N = 13.5$, Gain = 3, POE = 0 Part 2: $S/N = 13.5$, Gain = 3, POE = 0 Part 3: $S/N = 13.5$, Gain = 6, POE = 0.0E-3	
rags06c	Ra	K	2014-11-23 05:00:00	2014-11-23 06:00:00	<pre>tracking station: pushchino OK. No problems noticed. S/N=11,0 dBm, Poe=0,00017E-3, Gain=3</pre>	
rags06d	Ra	K	2014-12-01 21:00:00	2014-12-01 22:00:00	<pre>tracking station: pushchino OK. No problems noticed. S/N=11,0 dBm, Poe=0,00006E-3, Gain=6</pre>	
rags06e	Ra	K	2014-12-10 10:00:00	2014-12-10 11:00:00	<pre>tracking station: pushchino OK. No problems noticed. S/N=11,5 dBm, Poe=0,00006E-3, Gain=3</pre>	

Шумовая температура

Observation code	Band	Time	T _{sys}	Source	Observation code	Band	Time	T _{sys}	Source
rags06a	К1	2014-07-26 03:57:08	120.5	IC1396N	rags06c	Kl	2014-11-23 04:57:12	119.8	IC1396N
rags06a	К2	2014-07-26 03:58:36	138.2	IC1396N	rags06c	К2	2014-11-23 04:58:40	140.4	IC1396N
rags06a	K1	2014-07-26 07:00:23	124.2	IC1396N	rags06c	Кl	2014-11-23 06:00:30	122.3	IC1396N
rags06a	K2	2014-07-26 07:01:51	142.9	IC1396N	rags06c	К2	2014-11-23 06:01:54	142.1	IC1396N
rags06b	К2	2014-10-10 20:59:25	133.8	IC1396N	rags06d	Kl	2014-12-01 20:57:12	118.9	IC1396N
rags06b	K1	2014-10-11 22:07:08	117.3	IC1396N	rags06d	К2	2014-12-01 20:58:40	137.5	IC1396N
rags06b	К2	2014-10-11 22:08:32	135.5	IC1396N	rags06d	Kl	2014-12-02 22:00:21	122.0	IC1396N
rags06b	K1	2014-10-11 23:57:05	119.0	IC1396N	rags06d	К2	2014-12-02 22:02:11	138.2	IC1396N
rags06b	K2	2014-10-11 23:58:33	138.1	IC1396N	rags06e	Kl	2014-12-10 09:57:12	119.8	IC1396N
rags06b	K1	2014-10-11 00:30:36	120.4	IC1396N	rags06e	К2	2014-12-10 09:58:40	138.0	IC1396N
rags06b	К2	2014-10-11 00:31:47	139.0	IC1396N	rags06e	K1	2014-12-10 11:00:21	122.9	IC1396N
					rags06e	К2	2014-12-10 11:01:54	143.2	IC1396N

Стандартное значение	К1	100±10
T _{sys} (k-band)	К2	127±8

Первичная обработка данных

Первичная обработка данных выполнялась на **программном корреляторе АКЦ ФИАН***.

Поиск интерферометрического отклика для наземно-космических баз выполнялся в программном пакете PIMA**.

*А. С. Андрианов, И. А. Гирин, В. Е. Жаров, В. И. Костенко, С. Ф. Лихачев, М. В. Шацкая, Вестник НПО имени С. А. Лавочкина, № 3, 55 (2014) **<u>http://astrogeo.org/pima/</u>

Обработка данных

Мы выполняли обработку данных в программном пакете AIPS Astronomical Image Processing System

- Калибровка групповой задержки сигнала и частоты интерференции (задача **FRING**) выполнялась по калибровочному источнику.
- Положения мазерных пятен относительно опорной детали (V_{LSR}=-9.4 км/с) и значения потоков определены из карт, построенных методом частоты интерференционных лепестков (задача **FRMAP**).
- Из карт, построенных с помощью процедуры **CLEAN**, были определены абсолютные координаты самой яркой мазерной детали.

ВЫВОД 1: размер и яркостная температура мазера

В наблюдениях мазера H₂O в глобуле IC 1396 N на наземно-космическом интерферометре с 10-м радиотелескопом РадиоАстрон отклик от источника не был обнаружен на проекциях баз >2.5 диаметров Земли, что дает:

верхний предел на **яркостную температуру** 6.25×10¹² К,

нижний предел на размер мазера L>0.3 а.е.

Эволюция спектра IC 1396 N (1996-2014)

V. I. Slysh, I. E. Val'tts, V. Migenes, E. Fomalont et al., Astrophys. J. 526, 236 (1999)

Карты мазерных групп

Карты, построенные **методом частоты интерференционных лепестков** для **самых ярких спектральных деталей**, наблюдавшихся **во второй сессии**, в каждой из четырех групп, объединяющих близкие по координатам мазерные пятна

ВЫВОД 2: новые мазерные пятна – джеты?

В спектре наблюдаются 4 группы деталей в центральном интервале скоростей от -4.4 до +0.6 км/с и две детали на далеких скоростях -9.4 и +4.4 км/с, удаленные от наиболее яркой детали на скорости ~0.3 км/с на расстояния 157 а.е. и 70 а.е, соответственно.

Четыре группы мазерных компонентов в центре спектра выстраиваются на прямой линии протяженностью ~200 а.е., при этом две группы – 3 и 4, не наблюдались ранее и, видимо, являются джетами, сформировавшимися в период 18 лет между наблюдениями 1996 и 2014 гг.

Линейная зависимость V_{LSR}(R)

ВЫВОД 3: Пространственная структура центральной части мазера, интерпретированная ранее как протопланетный диск, сохраняется на протяжении 18 лет в масштабе менее 20 мсек дуги, т. е. в пределах 15 а.е. при расстоянии до глобулы 750 пк.

На защиту выносятся следующие основные результаты

Модифицирован каталог метанольных мазеров I класса и создана его новая электронная версия, доступная в режиме online. На настоящий момент этот каталог содержит 206 объектов. Проведено отождествление этих мазеров с абсорбционными и эмиссионными объектами ближнего инфракрасного диапазона, открытых в рамках проектов космических миссий MSX и Spitzer. Показано, что метанольные мазеры I класса в 71% случаев отождествляются с темными инфракрасными облаками с четкими границами SDC (Spitzer Dark Clouds) и в 42% случаев – с протяженными объектами типа биполярных потоков Spitzer/EGOs (Extended Green Objects). Высказано предположение, что метанольные мазеры I класса могут формироваться в изолированных самогравитирующих конденсациях, каковыми являются SDC. Выборка SDC предлагается как новый самостоятельный список для исследования на частотах метанольного излучения I класса с целью обнаружения новых объектов данного типа.

В результате обработки архивных данных поляризационных наблюдений 7 мазеров ОН, проведенных на радиотелескопе в Нансэ (Франция) в главных линиях ОН в 4-х параметрах Стокса, получены гауссовы параметры деталей спектров и сделаны оценки поляризационных параметров: степень круговой поляризации т_с, плотность потока в линейной поляризации p, степень линейной поляризации m₁. Показано, что значения напряженности магнитного поля В колеблются для разных источников в интервале от <0.5 до 1.4 мГс. Показано, что ассоциации скоплений «ОН-метанол» реальны, т.е. магнитное поле, действующее в пределах скоплений ОН, может распространяться и на группы метанольных мазеров, а по размерам исследуемые области могут быть связанными структурами типа небольших облаков IRDC (Infrared Dark Cloud). На основании полученных значений величины напряженности магнитного поля получены значения отношения массы к магнитному потоку в размере исследуемой области, значения отношения теплового давления к магнитному и вириальные соотношения энергий кинетической, магнитной и гравитационной. Показано, что во всех источниках отношение массы к магнитному потоку превышает критическое значение, а энергия хаотических движений и энергия магнитного поля существенно меньше энергии гравитационных связей. С другой стороны, показано, что значение отношения теплового давления к магнитному во всех случаях <1, т.е. облака могут находиться в магнитно-доминирующем режиме. Подобное противоречие связывается с возможными большими ошибками как в определении значений напряженности магнитного поля, так и в возможных завышенных оценках расстояний до источников, увеличивающих размер исследуемых областей.

На основании собственных наблюдений метанольных мазеров I класса, ассоциирующихся с источниками EGOs, выполненных на радиотелескопе РТ-70 Центра дальней космической связи в Евпатории (Крым) показано, что в направлении источников типа Spitzer/EGOs излучение ОН(1720) присутствует в 72% случаев. Наблюдаются, в основном, широкие эмиссионные линии ОН(1720), средняя плотность на луче зрения молекул ОН в которых не превышает значения 10¹⁶ см⁻², а плотность молекулярного водорода составляет не более 10² см⁻³ в предположении, что размер конденсации равен 1000 а.е. Это может косвенно указывать на незначительную мощность биполярных потоков, на пространственное несовпадение метанольных конденсаций и конденсаций ОН(1720), на различия в моделях их накачки, а также на то, что размеры объектов EGO могут быть существенно меньше 1 000 а.е.

Подготовлен и выполнен обзор 100 областей звездообразования на координатах и лучевых скоростях метанольных мазеров I класса в четырех линиях основного состояния ОН на интерферометрической решетке VLA с пространственным разрешением 12", в том числе, для 20 инфракрасных объектов Spitzer/EGOs. Эмиссия ОН обнаружена в 10 EGOs: главные линии ОН на частотах 1665 и 1667 МГц наблюдаются в 50% и 45% объектов, соответственно; линия-сателлит на частоте 1612 МГц наблюдается в 15% случаев, линия-сателлит на частоте 1720 МГц – в 5% случаев. Оценка расстояния (медианные величины) между мазерами ОН и точечным источником Spitzer/GLIMPSE, который ассоциируется с EGO (0.04 пк), мазерами ОН и сІММ (0.14 пк), мазерами ОН и сІІММ (0.03 пк) показывает, что метанольные мазеры І класса расположены дальше от источника возбуждающего излучения, чем скопления мазеров ОН и мазерных пятен метанола II класса. Показано, метанольные мазеры I класса не сосуществуют с точечным ЧТО источником GLIMPSE, мазерами ОН и метанольными мазерами II класса в пределах одного и того же молекулярного ядра, т.е. это разные ядра, которые могут находиться на разных стадиях эволюционного развития.

Выполнен обзор 24-х EGOs в мазерной линии H_2O на волне 1.35 см на PT-22 Пущинской радиоастрономической обсерватории. Излучение зарегистрировано в 11 EGOs. Впервые обнаружено излучение H_2O источника G28.83–0.25, которое, вероятно, соответствует ранней стадии распространения ударной волны. Показано, что в некоторых EGOs лучевые скорости главных деталей спектров H_2O и метанольных мазеров I класса различаются более чем на 5-10 км/с. Возможные объяснения этому факту:

- 1) эти мазеры сформированы в разных молекулярных ядрах,
- 2) излучение H₂O исходит из небольших областей на фронте ударной волны, возбуждающей мазер, что приводит к сдвигу скорости мазера H₂O относительно более спокойной среды, содержащей протяженные структуры с метанольным излучением I класса.

Эти гипотезы можно и целесообразно проверить с помощью получения интерферометрических данных для мазеров H₂O в объектах EGOs.

Публикации по теме диссертации

- О. С. Баяндина, А. В. Алакоз, И. Е. Вальтц. «Исследование тонкой пространственной структуры мазера H₂O в глобуле IC1396N» 45-ая Международная студенческой научной конференции «Физика Космоса», 2016, 1-5 февраля, Екатеринбург, Россия. Тезисы докладов, стр. 242.
- Г.М. Рудницкий, Е.Е. Лехт, О.С. Баяндина, И.Е. Вальтц, Э.Р. Хан.
 «Наблюдения "протяжённых зелёных объектов" в линии H₂O на волне 1.35 см на радиотелескопе PT-22 в Пущино».
 2016, Астрономический журнал, 93, стр. 121-136.
- О.С. Баяндина, И.Е. Вальтц, С. Куртц. «Наблюдения EGOs в линиях ОН с высоким пространственным разрешением».
 2015, Астрономический журнал, 92, стр. 883–901.
- G.M. Rudnitskij, E.E. Lekht, O.S. Bayandina, I.E. Val'tts, E.R. Khan.
 «Observations of H₂O masers toward Extended Green Objects».
 European Week of Astronomy and Space Science (EWASS-2015),
 2015, 20–28 June, Tenerife, St. Cristobal de Laguna, Spain. Abstract 558.
- 5. O.S. Bayandina, S.E. Kurtz, I.E. Val'tts. *«OH masers survey at the EVLA subsample of EGOs».*European Week of Astronomy and Space Science (EWASS-2015),
 2015, June 20–28, Tenerife, St. Cristobal de Laguna, Spain. Abstract 224.
- 6. О.С. Баяндина, И.Е. Вальтц, С. Куртц.
 «Эволюция молекулярных ядер в объектах Spitzer/EGOs». Научная конференция «Астрономия от ближнего космоса до космологических далей», 2015, 25–30 мая, ГАИШ МГУ, Москва, Россия. Сборник резюме докладов, стр. 47.
- Е.Е. Лехт, О.С. Баяндина, И.Е. Вальтц, Э.Р. Хан. «Наблюдения мазеров Н₂О в направлении "протяжённых зелёных объектов"».

«Наблюдения мазеров H₂O в направлении "протяженных зеленых объектов"». XXXII Всероссийская конференция «Актуальные проблемы внегалактической астрономии», симпозиум «Задачи обсерватории Миллиметрон», **2015**, 20-23 апреля, Пущино, Россия. Тезисы докладов, стр. 54–55.

- 8. O.S. Bayandina, S.E. Kurtz, A.V. Alakoz, I.E. Val'tts, S.V. Kalenskii, G.M. Rudnitskij.
 «A teeny-tiny protoplanetary disk IC 1396 N as seen in maser H₂O lines with space mission RADIOASTRON and ground VLBI». Young Scientific School-Conference in the frames of 40-th COSPAR Assembly, 2014, August 2–10, Moscow, Russia. Abstract book, p. 39.
- 9. О.С. Баяндина, А.В. Алакоз, И.Е. Вальтц.
 «Магнитные поля в метанольных мазерных конденсациях по данным исследования со пряженных областей. Астрофизические параметры».
 2014, Астрономический журнал, 91, стр. 540–549.

- О.С. Баяндина, С. Куртц, А.В. Алакоз, И.Е. Вальтц, С.В. Каленский, Г.М. Рудницкий.
 «РАДИОАСТРОН в системе космической РСДБ: исследование мазера Н₂О в протопланетном диске IC 1396 N». XI Конференция молодых ученых «Фундаментальные и прикладные космические исследования», 2014, 9–11 апреля, ИКИ РАН, Москва, Россия. Тезисы докладов, стр. 31–36.
- О.С. Баяндина, И.Е. Вальтц, С. Куртц.
 «Обзор метанольных мазеров на EVLA (NRAO, USA) на 18 см: первые результаты наблюдений». XI Конференция молодых ученых «Фундаментальные и прикладные космические исследования», 2014, 9–11 апреля, ИКИ РАН, Москва, Россия. Тезисы докладов, стр. 24–30.
- 12. О.С. Баяндина, А.В. Алакоз, И.Е. Вальтц.
 «Магнитные поля в метанольных мазерных конденсациях по данным исследования сопряженных областей. Наблюдательные параметры».
 2013, Астрономический журнал, 90, стр. 967–982.
- 13. О.С. Баяндина, А.В. Алакоз, И.Е. Вальтц.
 «Магнитные поля в молекулярных газо-пылевых конденсациях и параметры межзвездной среды».
 Всероссийская астрономическая конференция ВАК-2013 «Многоликая Вселенная»,
 2013, 23–27 сентября, Санкт-Петербург, Россия. Тезисы докладов, стр. 24.
- 14. O.S. Bayandina, A.V. Alakoz, I.E. Val'tts.
 «Magnetic Fields in 7 Young Stellar Objects Observed with Nancay Radio Telescope». 2013, Proceedings of the International Astronomical Union / Volume 9 / Symposium S302 / August 2013, pp 38–39. Published online: 07 August 2014 in Cambridge Journals Online.
- 15. O.S. Bayandina, I.E. Val'tts.
 «The similarities and differences in the formation of masers on methanol and OH according to data from radio astronomy observations». XLII Young European Radio Astronomers Conference, 2012, September 18–21, Pushchino Radio Astronomical of ASC LPI, Pushchino, Russia. Abstract Book, p.3.
- И.Д. Литовченко, О.С. Баяндина, А.В. Алакоз, И.Е. Вальтц, Г.М. Ларионов, Д.В. Муха, А.С. Набатов, А.А. Коноваленко, В.В. Захаренко, Е.В. Алексеев, В.С. Николаенко, В.Ф. Кулишенко, С.А. Одинцов.
 «Радиолинии ОН на частоте 1720 МГц как индикаторы биполярных потоков в окрестностях метанольных мазеров I класса».
 2012, Астрономический журнал, 89, стр. 593–610.
- 17. O.S. Bayandina, I.E. Val'tts, G.M. Larionov.
 «VizieR Online Data Catalog: Class I methanol maser catalog». 2012, VizieR On-line Data Catalog,
 URL: http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=J/AZh/89/611.
- 18. О.С. Баяндина, И.Е. Вальтц, Г.М. Ларионов.
 «Метанольное мазерное свечение І класса в инфракрасных облаках и третья версия каталога cIMM/SFR».
 2012, Астрономический журнал, 89, стр. 611–623.

- I.E. Val'tts, I.D. Litovchenko, O.S. Bayandina, A.V. Alakoz, G.M. Larionov, D.V. Mukha, A.S. Nabatov, A.A. Konovalenko, V.V. Zakharenko, E.V. Alekseev, V.S. Nikolaenko, V.F. Kulishenko and S.A. Odintsov.
 «New OH Observations toward Northern Class I Methanol Masers».
 2012, Proceedings of the International Astronomical Union / Volume 8 / Symposium S287 / January 2012, pp 294–295. Published online: 24 July 2012 in Cambridge Journals Online.
- O.S. Bayandina, G.M.Larionov, I.E. Val'tts.
 «Identification of Class I Methanol Masers with Objects of Near and Mid-Infrared Bands and the Third Version of Class I Methanol Maser Catalog».
 2012, Proceedings of the International Astronomical Union / Volume 8 / Symposium S287 / January 2012, pp 280–281. Published online: 24 July 2012 in Cambridge Journals Online.
- G. M. Larionov, I.D. Litovchenko, O.S. Bayandina, I.E. Val'tts, A.V. Alakoz, D.V. Mukha, A.S. Nabatov, A.A. Konovalenko, V.V. Zakharenko, E.V. Alekseev, V.S. Nikolaenko, V.F. Kulishenko and S.A. Odintsov.
 «OH 1720-MHz Observations toward Northern Class I Methanol Masers with 70-m Ukrainian Telescope».
 IAU Symposium №280 «The Molecular Universe»,
 2011, May 30 June 3, Toledo, Spain. Abstract book, p. 39.
- И.Д. Литовченко, А.В. Алакоз, О.С. Баяндина, И.Е. Вальтц, Г.М. Ларионов, Д.В. Муха, А.С.Набатов, А.А. Коноваленко, В.В. Захаренко, Е.В. Алексеев, В.С. Николаенко, В.Ф., Кулишенко, С.А. Одинцов.
 «Обзор метанольных мазеров I класса в линии сателлита ОН(1720 МГц) на 70-м радиотелескопе НАНУ (Украина)».
 40-я международная студенческая научная конференция «Физика космоса»,
 2011, 31 января 4 февраля, Коуровка, Россия.
 Труды конференции, Уральский государственный университет, стр. 302.

- 23. И.Д. Литовченко, А.В. Алакоз, О.С. Баяндина, И.Е. Вальтц.
 «Наблюдения мазерного сателлита ОН на частоте 1720 МГц в полной выборке метанольных мазеров І класса».
 Всероссийская астрономическая конференция ВАК-2010 «От эпохи Галилея до наших дней»,
 2010, 12–19 сентября, САО, Нижний Архыз, Россия.
 Тезисы докладов, URL: <u>http://agora.guru.ru/VAK-2010/files/570_litov_2010.doc</u>.
- 24. Г.М. Ларионов, И.Е. Вальтц, О.С. Баяндина.
 «Инфракрасные статистические характеристики метанольных мазеров І класса».
 Всероссийская астрономическая конференция ВАК-2010 «От эпохи Галилея до наших дней»,
 2010, 12–19 сентября, САО, Нижний Архыз, Россия.
 Тезисы докладов, URL: http://agora.guru.ru/VAK-2010/files/260_bayandina.doc.
- I.E. Val'tts, G.M. Larionov, O.S. Bayandina.
 «Revised version of the class I methanol maser catalog». 2010, Archive of electronic publishing of scientific articles, URL: http://arxiv.org/abs/1005.3715.

Спасибо за внимание!

Journal of The Korean Astronomical Society 37: 265 » 268, 2004

HOT, WARM, AND COLD CORES: GOLDILOCKS MEETS MASSIVE STAR FORMATION

1. Cold molecular core: Size <1 pc Mass $10^2 - 10^3 M_{\odot}$ Temperature 10-20 K lacking any proto-stellar objects

2. Warm molecular core: Size $\sim 0.1 \text{ pc}$ Mass $10^2 \cdot 10^3 \text{ M}_{\odot}$ Temperature 30-50 K form one (or more) proto-stars

3. Hot molecular core: Size ≤0.1 pc Mass ~10-10⁴ M₀ Temperature ≥100 K molecular cores heated by a luminous, embedded young stellar object/objects (pre HII)

Fig. 2. A schematic representation showing the hierarchy of structures within molecular clouds. From Kim & Koo (2001); see also Franco et al. (2000). A massive star, forming within a HMC, may give rise to much more extended structures as it encounters the lower densities of the clump and the cloud.

Massive Star Birth: A Crossroads of Astrophysics Proceedings IAU Symposium No. 227, 2005 R. Cesaroni, M. Felli, E. Churchwell & C. M. Walmsley, eds.

© 2005 International Astronomical Union doi:10.1017/S1743921305004321

Hot molecular cores

Riccardo Cesaroni

Notwithstanding their clear identification, it is questionable that HMCs may be seen as "separate" physical entities.

It seems instead that **they correspond to <u>density and temperature</u>** <u>peaks</u> inside more extended molecular clumps.

The word "clump" will be used in the following to indicate the molecular surroundings of HMCs, the latter being located roughly at the center of the clumps.

These have been observed in medium density tracers such as C³⁴S or C¹⁷O (Cesaroni et al. 1991; Plume et al. 1997; Hofner et al. 2000), are typically 10 times larger and more massive than HMCs, and have temperatures of the order of a few 10 K.

Massive Star Birth: A Crossroads of Astrophysics Proceedings IAU Symposium No. 227, 2005 R. Cesaroni, M. Felli, E. Churchwell & C. M. Walmsley, eds.

© 2005 International Astronomical Union doi:10.1017/S1743921305004321

Hot molecular cores

Riccardo Cesaroni

Clumps:

- diameter ~1 pc;
- mass $\sim 10^3 \,\mathrm{M_{\odot}};$
- mean density **10**⁵ cm⁻³,
- typical densities ~10⁵ cm⁻³,
- implying a free-fall time of ~10⁵ yr;
- temperatures ~30 K;

Figure 1. Maps of the HMC (grey scale) and <u>surrounding molecular clump (contours)</u> in the highmass star forming region IRAS 20126+4104. The HMC and associated clump are traced respectively by the $CH_3CN(5-4)$ (Cesaroni et al. 1997) and $C^{17}O(2-1)$ (Fontani pers. comm.) lines.